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Abstract—Cold load pickup (CLPU) phenomenon is identified
as the persistent power inrush upon a sudden load pickup
after an outage. Under the active distribution system (ADS)
paradigm, where distributed energy resources (DERs) are ex-
tensively installed, the decreased outage duration can induce a
strong interdependence between CLPU pattern and load pickup
decisions. In this paper, we propose a novel modelling tech-
nique to tractably capture the decision-dependent uncertainty
(DDU) inherent in the CLPU process. Subsequently, a two-stage
stochastic decision-dependent service restoration (SDDSR) model
is constructed, where first stage searches for the optimal switching
sequences to decide step-wise network topology, and the second
stage optimizes the detailed generation schedule of DERs as well
as the energization of switchable loads. Moreover, to tackle the
computational burdens introduced by mixed-integer recourse, the
progressive hedging algorithm (PHA) is utilized to decompose the
original model into scenario-wise subproblems that can be solved
in parallel. The numerical test on modified IEEE 123-node test
feeders has verified the efficiency of our proposed SDDSR model
and provided fresh insights into the monetary and secure values
of DDU quantification.

Index Terms—Cold load pickup, decision-dependent uncer-
tainty, distribution system, service restoration, stochastic pro-
gramming.

NOMENCLATURE

Indices
d, i, l Indices for loads, buses and distribution lines
g, b, r, e, n Indices for DG, substation, RES, ESS and DER
t, s Index for time step and scenario
Sets
S Set of all scenarios
T Set of all time steps
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ΩD,ΩB ,ΩF Set of loads, buses and distribution lines
ΩG,Ωsub,ΩR,ΩE Set of DGs, substations, RESs and ESSs
ΩD−SW ,ΩF−SW Set of switchable loads and lines
ΩG−BS ,ΩG−BS

i Set of blackstart units and those at bus i
ΩD

i ,Ω
B
i ,Ω

F
i Ωsub

i Set of loads, buses, lines and substations at bus
i

ΩG
i ,Ω

R
i ,Ω

E
i ,Ω

der
i Set of DGs, RESs, ESSs and all DERs at bus i

Constant parameters
p̄rer,t,s Forecasted active power output of RES r at time

t under scenario s
βc
e , β

d
e Charging and discharging efficiency of ESS e

P̌ ess,c
e , P̂ ess,c

e Maximum and minimum active charging power
of ESS e

P̌ ess,d
e , P̂ ess,d

e Maximum and minimum active discharging
power of ESS e

P̌ dg
g , P̂ dg

g , Q̌dg
g , Q̂

dg
g Maximum and minimum active/reactive output

of DG g
Q̌re

r , Q̂
re
r Maximum and minimum reactive output of re-

newable r
Ǔsqr

i , Ûsqr
i Minimum and maximum squared voltage of bus

i
∆t Length of each time step
P̂ sub
b,t Maximum active power capacity of substation b

from transmission system
Ŝij Rating of distribution line ij
πs Probability of scenario s
PL
d,0, Q

L
d,0 Pre-outage active and reactive power level of

load d
rij , xij Resistance and reactance of distribution line ij
RDg, RUg Ramping-up and ramping-down rate of DG g
First-stage decision variables
Zd,t Binary variable indicating the pickup action of

unswitchable load d at time t
vdern,t Binary variable indicating the energizing status

of DER n at time t
vdgg,t, v

sub
b,t , v

re
r,t Binary variable indicating the operating status

of DG g, substation b and RES r at time t
vess,ce,t , vess,de,t , vess,ie,t Binary variable indicating the charging, dis-

charging and idle status of ESS e at time t
vline
ij,t , v

bus
i,t Binary variable indicating the energizing status

of distribution line ij and bus i at time t
zd,t Binary variable indicating the pickup status of

unswitchable load d at time t
Second-stage decision variables
Eess

e,t,s Residual energy of ESS e at time t under
scenario s

pdern,t,s, q
der
n,t,s Integrated active and reactive output of DER n

at time t under scenario s
pdgg,t,s, q

dg
g,t,s Active and reactive output of DG g at time t

under scenario s
pess,ce,t,s , p

ess,d
e,t,s Active charging and discharging power of ESS

e at time t under scenario s
pline
ij,t,s, q

line
ij,t,s Active and reactive power flow of distribution
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line ij at time t under scenario s
pLd,t,s, q

L
d,t,s Active and reactive power of load d at time t

under scenario s
pre,curtr,t,s , qre,curtr,t,s Curtailment active and reactive power of RES r

at time t under scenario s
prer,t,s, q

re
r,t,s Active and reactive output of RES r at time t

under scenario s
psubb,t,s, q

sub
b,t,s Active and reactive power of substation b at time

t under scenario s
Usqr

i,t,s Squared voltage magnitude of bus i under sce-
nario s

zd,t,s Binary variable indicating the pickup status of
switchable load d at time t under scenario s

I. INTRODUCTION

NOWADAYS, ever-increasing extreme events, potentially
arising from extreme weather and cyber attacks, have

exposed power systems to the underlying threats of large-
scale outages [1]. It has been reported that the U.S. needs
to spend $18-33 billion every year on dealing with extreme
weather events-related outages [2]. Climbing load demands
and market deregulation have further accentuated the situation
and greatly deteriorated the operation reliability [3]. On the
other hand, with the proliferation of active units on the end-
users’ side, such as distributed energy resources (DERs),
energy storage systems (ESSs) and intelligent electronic de-
vices (IEDs), conventional passive distribution systems are
gradually evolving into more active ones. In this context,
active distribution systems (ADSs) have emerged as powerful
tools for realizing self-healing capability [4], relying on which
independent service restoration after a major outage becomes
realizable even without power support from the external grid
[5].

During the service restoration phase of power systems, the
occurrence of persistent demand increase arising from cold
load pickup (CLPU) has long been a knotty and nonnegligible
issue, since the first exploration in 1979 [6]. Physically,
the power inrush upon restoration mainly results from the
loss of diversity and switching cycle coincidence of process-
controlled loads after a sudden power recovery [7]. In some
harsh weathers when TCLs take up a high share of total
demand, the power inrush can reach up to several times the
normal level and last for tens of minutes to hours [6–9].
Therefore, accurate modelling is required to hedge against
the potential security issues. Otherwise, adverse effects such
as violation of operation limits, equipment damage, and sec-
ondary load shedding will occur and delay the restoration
process [10]. Currently, the deterministic CLPU model is
the most adopted in service restoration, with a pre-fixed
set of parameters estimated from historical data [8], [11],
[12], or directly computed by simulating the thermal-physical
process of thermostatically controlled loads (TCLs) [6], [7].
For instance, a delayed exponent formulation for CLPU is
integrated into a multi-time step service model for ADSs in
[13]. The associated amplitude and duration of power increase
are assumed to be constant throughout the whole restoration
period without fluctuation. Similarly, a simplified two-block
CLPU model is adopted in [14], with invariant parameters
extracted from look-up tables.

Nevertheless, CLPU models based on deterministic
parameter-invariant models are no longer applicable for to-
day’s ADSs. As ADSs are embracing growing IEDs and
DERs, power interruption caused by a major outage can be
tackled more swiftly even within several minutes [9]. In this
situation, the convergence of TCLs’ internal temperature with
the ambience is still in progress and their inner thermal-
physical properties are changing over time. On the other hand,
step-by-step load restoration is prevalent in service restoration
to prevent frequency dips and voltage issues. Considering the
ongoing process of load undiversification, different energizing
orders could lead to distinct CLPU patterns at each load node.
While the relationship between CLPU realization and outage
duration has long been acknowledged in estimation-related
literature [7], [8], limited research in the restoration context
has offered an explicit formulation that adequately captures the
interdependence between CLPU pattern and sequential load
pickup decisions.

Furthermore, another salient obstacle to accurately mod-
elling CLPU is its inherent uncertainty and estimation error.
Current CLPU evaluation methods can be mainly categorized
into two types, namely physical model-based methods [6],
[7], and data-driven statistical methods [8], [11]. For physical
model-based methods, the lack of end-user information makes
accurate estimation an aporia despite their precision in reflect-
ing the thermal-physical process. For data-driven methods, the
random pattern of customer behaviors and regression bias are
the main sources of forecast error. On the one hand, because
end-users’ switching behaviors are random, noise is inevitably
introduced into the post-outage load estimation [15]. On the
other hand, the limited coverage of sensors and advanced
meters in distribution systems adds another dimension of
uncertainty to the estimation [16], [17]. According to [8], even
after collecting data from 50 instances of historical outages,
the percentage error of the CLPU peak exceeds 5%, which will
be magnified further if the number of smart meters is reduced
and limited outage cases are available. Thus, it is necessary to
update existing models to account for the uncertain nature of
CLPU.

To tackle the load uncertainty in the restoration problem,
stochastic programming (SP) has been extensively used in
previous research. In [18], joint probability density functions
(PDFs) of renewable outputs during restoration are represented
by a Gaussian mixture model. In [19], PDFs are constructed
for load and renewable outputs, from which multiple scenarios
are generated to discretize PDFs for tractability. Besides the
SP, robust optimization (RO) is another commonly adopted
modelling method in the same context [9], [20]. With RO,
the worst realization of load uncertainty can be identified
in a predetermined uncertainty set and then fed into the
restoration model to achieve a worst-case immune schedule.
However, the majority of the research up to now are designed
to quantify the exogenous uncertainty of load demand. Specif-
ically, parameters for constructing uncertainty sets or PDFs for
exogenous uncertainty are prefixed beforehand and irrelevant
to decisions. This fails to work in ADSs, as CLPU uncertainty
in the considered context should be classified into endogenous
uncertainty, which is also named as decision-dependent un-
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Fig. 1. Motivating example for DDU in CLPU process

certainty (DDU) meaning that uncertainty realization can be
affected by decisions. While DDU is rarely examined in the
context of restoration, it has been recognized and explored
in some power system related areas. For instance, the study
in [21] proposes a multistage stochastic planning model that
accounts for endogenous uncertainty of customer participation
in demand response schemes, and uses Benders decomposition
to facilitate computation. In [22], a two-stage resilience en-
hancement model for distribution systems is constructed, and
the DDU of line damage status is linked with first-stage hard-
ening decisions. The progressive hedging algorithm (PHA)
is applied to deal with mixed-integer recourse and massive
scenarios. Besides, in the field of operation research, several
ways to manipulate underlying uncertainties through decision
variables have been presented. In [23], distortion toward PDFs
is investigated using linear scaling and convex combination
of one or more predefined PDFs, which are subsequently
incorporated in two-stage stochastic models. The multistage
resilient mixed-integer optimization with decision-dependent
uncertainty sets is investigated in [24], and nonlinear decision
rules are utilized to produce tractable reformulation. The study
demonstrates that by appropriately modeling the DDU, the
results’ conservatism can be mitigated.

To better exemplify the DDU in CLPU, Fig.1 presents a
motivating example to show the linkage between load pickup
decisions and CLPU evolution patterns, based on the data from
[8]. According to Fig. 1(a), after an outage occurs at 13:50,
two distinct decisions on load pickup time directly lead to
two different CLPU realizations, as the blue and red curves
show. Accounting for the inherent stochasticity in estimation,
PDFs for the CLPU peak amplitude under these two decisions
are presented in Fig.1(b), where an obvious distinction in
the expectations and variances can be observed. Under this
circumstance, naively adopting an invariant evolution pattern
and PDF regardless of load pickup ordering might result in
an infeasible restoration schedule and even induce adverse
security issues.

Therefore, to precisely capture this DDU, we develop a
decision-dependent modelling method for quantifying the in-
terdependence between the CLPU process and load pickup
decisions, which is then fed into the subsequent stochastic
restoration model.

Based on the above discussions, the major originality and
contributions of this paper can be summarized as follows:

1) A novel decision-dependent CLPU (DD-CLPU) model

is proposed considering DDU in the CLPU process.
To lessen the computational burden, a technique called
mixture distribution is utilized to describe the interde-
pendence of CLPU pattern and load pickup decisions.
Through sampling and linearization, tractable reformu-
lation can be obtained without exhausting all possible
combinations of load pickup sequences.

2) A two-stage stochastic decision-dependent service
restoration (SDDSR) model is constructed with mixed-
integer recourse. The first stage decides the optimal
switching sequence to determine the step-wise network
topology and DERs’ startup, based on which detailed
operations for DERs are determined in the second stage,
upon the DDU of CLPU and exogenous uncertainty
of renewable energy sources (RESs) become realized.
Switchable loads are considered in the second stage
for offering extra flexibility. To relieve computational
burdens, the progressive hedging algorithm (PHA) is
adopted to solve the large-scale mixed-integer linear
programming (MILP) in parallel.

3) To offer fresh insights on the potential value of adopting
the decision-dependent method, a useful index, the value
of decision-dependent stochastic programming (VDDSS)
is computed in the numerical study, under different set-
tings of ambient temperature and outage duration.

The remainder of this paper is organized as follows. Section
II presents the DD-CLPU formulation. Section III provides the
SDDSR model for ADSs. Section IV illustrates the PHA-based
solving method. Numerical results are presented in Section V
and Section VI concludes the paper.

II. DECISION-DEPENDENT CLPU MODEL AND
TRACTABLE LOAD DEMAND FORMULATION

A. CLPU Issue Triggered by Loss of Load Diversity
Generally, there are three major causes of CLPU problems,

including magnetizing inrush during transformation energiza-
tion, induction motor starting transients, and loss of load
diversity [7]. Given that the duration of the first two inrushes
is within seconds and can be handled via coordination of
protective devices, only the third cause is addressed here.

Load diversity, in the context of this study, refers to the
proportion of process-controlled loads with random and inde-
pendent switching cycles among all loads [25]. During normal
operation, the switching actions of process-controlled loads
are typically uniformly distributed, allowing them to indepen-
dently maintain their internal states (such as the temperatures
of TCLs) around set-points. However, because their inner
states diverged concurrently during the outage, re-energizing
the feeder will result in simultaneous switching operations,
leading to an abnormal high-level power inrush. To make a
clear distinction between these two types of load states, we
refer to diversified loads as those that switch independently
during normal operation and undiversified loads as those that
switch simultaneously after an outage.

B. Decision-Dependent CLPU Model
An accurate model with refined parameters is the

preliminary to accurately describe the CLPU properties. It has
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Fig. 2. Decision-dependent Delayed exponential model for feeder-level CLPU

been recognized that CLPU evolution pattern triggered by loss
of load diversity can be approximated by delayed exponent
function, where associated parameters are derived from
physical method or data-driven method [7]. Fig. 2 depicts
the delayed exponent CLPU process with decision-dependent
parameters at a certain load feeder. After an outage occurs
at t0, load at node d gradually loses its diversity. When it
is restored at t2, a persistent increase happens and maintains
at the peak value for a period of time, as a result of TCLs’
simultaneous switching actions. Once the first TCL returns
to its preset temperatures at t3, the feeder-level load begins
to decay exponentially until it reaches the pre-outage level at
t4. Physically, this decay is caused by the process of TCLs’
diversification, and its duration is highly correlated with
the thermal characteristics of buildings and appliances. The
associated parameters are defined as below:

S̃Ud (Zd) Stochastic scaled factor of undiversified load d
S̃Dd Stochastic scaled factor of diversified load d
λd(Zd)∆t Peak duration of load d
ζd(Zd)∆t Decay duration of load d
TOd (Zd) Outage duration of load d

where all parameters except S̃Dd are parametrized by the
decision vector Zd = [Zd,1, ..,Zd,|T |]. Note that Zd is a unit
vector with only one non-zero element, as Zd,t = zd,t−zd,t−1

and load is not allowed to be shedded once energized. Here
we suppose the demand level after load d completely gains
diversity, i.e., PLd,0 · S̃Dd , only varies around its pre-outage
level PLd,0, regardless of its recovery time. This is a mild
assumption as outage duration in ADSs is always not long
enough for a large discrepancy. Therefore, the mathematical
formulation with the defined parameters is stated as below:

S̃d(t,Zd)=S̃Ud (Zd)·
(
1−u(t−t3(Zd))

)
·u(t−t2(Zd))

+
(
S̃Dd +

(
S̃Ud (Zd)−S̃Dd

)
·eV (t,Zd)

)
·u(t−t3(Zd))

(1a)

V (t,Zd) = −αd(Zd) · (t− t3(Zd)) (1b)

t2(Zd) = t1 +

|T |∑
m=1

Zd,m · (m− 1) ·∆t (1c)

t3(Zd) = t2(Zd) + λd(Zd) ·∆t (1d)

where u(·) is the unit step function. The value of α(Zd)

Fig. 3. Regressed scaled CLPU peak value and peak duration against feeder-
level outage duration

in (1b) duration physically represents the decay rate of the
demand level, whose values are strongly correlated with the
thermal characteristics of buildings (e.g., thermal capacity and
insulation) and TCLs (e.g., rated capacity and temperature
thresholds) [6]. The time t1 when ADS control center initiates
restoration is set to be 0. In addition, here we suppose both
S̃Ud (zd) and S̃Dd follow the Gaussian distribution N (·):

S̃Ud (Zd) ∼N (S̄Ud (Zd, ), σ
U
d (Zd)) ∀d ∈ ΩD (2a)

S̃Dd ∼N (S̄Dd , σ
D
d ) ∀d ∈ ΩD (2b)

with mean values S̄Ud (Zd), S̄Dd and standard deviations
σUd (Zd), σDd . But other forms of PDFs based on ADSs’
estimation are also compatible. In this way, the relationship
between load pickup decisions and undiversified loading factor
is decomposed into two separate parts, which can be con-
veniently distilled from estimation results. It is worth noting
that while σUd and σDd are used to portray CLPU estimation
errors, their values can also be adjusted to account for potential
biases in load measurements (likely arising from pseudo-
measurements [16], [17] due to partially allocated advanced
meters or a lack of historical outage cases), uncertainties on
the communication side and even to reflect operators’ risk
aversion. Furthermore, the decision-dependent λd(Zd) and
ζd(Zd) are derived from energy not served within the outage
time based on estimated S̄Ud (Zd), or directly from physical
model. Since their stochasticity in time duration is assumed
to be comparably smaller than ∆t and can be addressed by
more prompt control schemes [26], here we supposed them
as determinate parameters. Assuming that TCLs account for
a significant proportion of overall de-energized loads in the
summer, Fig. 3 gives an illustration of regressed relationship
between S̄Ud (Zd), λd(Zd) and TOd (Zd) under different am-
bient temperature, based on data from [6], [8]. What can be
clearly seen in the figure is the nonlinearly increasing trend
at the start and the saturation at peak, as the outage proceeds.
Since the nonlinearity before saturation points is hard to be
tractablely incoporated into (1), a step-wise procedure is es-
tablished to relieve the computational burden in the following
subsection.

C. Power Demand Formulation with Sampled DD-CLPU

1) Sampling and Scenario Generation for CLPU parame-
ters: From the above analysis and CLPU modeling, we know
that each value of Zd will result in one specific CLPU curve.
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Therefore, we first conduct parameter sampling under each
Zd for discretizing the nonlinear relationship shown as Fig. 3.
Then scenario generation is adopted to tackle the intractable
PDFs. In summary, the pseudo-code for the detailed procedure
is listed in Algorithm 1, and Fig. 4 gives a brief outline of the
necessary tasks at each step.

Algorithm 1: Pseudo-code for Parameter Sampling
and Scenario Generation

1 Obtain the realized parameters: system-wide outage
duration TOsys and ambient temperature Ta;

2 Based on historical CLPU data/appliance information
and Ta, estimate associated curves against outage
duration, i.e. get explicit expression for S̄Ud (TO),
λd(T

O) and αd(TO), ∀d ∈ ΩD against outage
duration TO;

3 for m = 1 to |T | do
4 TO(m) = TOsys + (m− 1)∆t
5 end
6 for ∀d ∈ ΩD do
7 Fit the estimation error of S̄Ud (TO(m)) and S̄Dd ,

here with Gaussian distributions, denoted by
ẽUd (m) ∼ N (0, σUd (m)) and ẽDd ∼ N (0, σDd );

8 Calculate S̄Ud (m), λd(m) and αd(m) from
estimated curves under TO(m);

9 Sample |S| scenarios: {eUd,1(m), .., eUd,|S|(m)}
from N (0, σUd (m)), and {eDd,1, .., eDd,|S|} from
N (0, σDd );

10 Calculate:{
SUd,s(m) = S̄Ud (m) + eUd,s(m)

SDd,s = S̄Dd + eDd,s
∀s ∈ S

11 end

Subsequently, based on the sampled data, each bus node has
possible candidate curves with number of |T | × |S|, whose
formulation can be expressed by discretizing the (1) as below:

Sd,s(t,m)=SUd,s(m)·
(
1−u(t−t3(m))

)
·u(t−t2(m))

+
(
SDd,s+

(
SUd,s(m)−SDd,s

)
·eV (t,m)

)
· u(t−t3(m))

(3a)

V (t,m) = −αd,m · (t− t3(m)) (3b)
t2(m) = (m− 1) ·∆t (3c)
t3(m) = t2(m) + λd,m ·∆t (3d)

∀d ∈ ΩD,m ∈ T , s ∈ S

Mathematically, the curve with index m corresponds to the
decision Zd with element Zd,m = 1. Additionally, it is worth
noting that by incorporating historical CLPU data/detailed
appliance information, only pre-outage load and post-outage
temperature measurements are required for CLPU estimate.
As a result, the procedure outlined in this subsection can be
carried out offline prior to initiating the restoration. Next,
we will show how to establish a tractable load demand
formulation using the sampled curves while capturing the
decision-dependency.

Fig. 4. Procedures for deriving the parameters of candidate CLPU curves

2) Load Demand Formulation with Mixture Distribution:
For linearizing the exponent term, each curve presented in (3)
is equally sampled with interval ∆t:

∆Sd,s(k,m)=Sd,s(k∆t,m)−Sd,s((k−1)∆t,m), 1 ≤k≤|T |

∀d ∈ ΩD,m ∈ T , s ∈ S (4)

The ∆Sd,s(k,m) represents the difference of sampled value
at k-th and (k − 1)-th step of m-th CLPU realization of load
d. Then, the scenario-wise load demand is computed as below
in an accumulative manner [13]:

LFd,t,s(Zd)=SUd,s(Zd)zd,t−
t∑

k=1

∆SUd,s(Zd, k)zd,t−k+1 (5a){
pLd,t,s(Zd) = PLd,0 · LFd,t,s(Zd)
qLd,t,s(Zd) = QLd,0 · LFd,t,s(Zd)

(5b)

∀d ∈ ΩD, t ∈ T , s ∈ S

where LFd,t,s(Zd) in (5a) is the time-correlated loading factor
of load d at t under scenario s, and decision-dependent
coefficients SUd,s(Zd) and ∆SUd,s(Zd, k) are defined as below:

SUd,s(Zd) =

|T |∑
m=1

SUd,s(m)Zd,m (6a)

∆SUd,s(Zd, k) =

|T |∑
m=1

∆Sd,s(k,m)Zd,m (6b)

Zd,1 + Zd,2 + ..+ Zd,|T | = 1 (6c)
Zd,t = zd,t − zd,t−1 (6d)

Without loss of generality, power factors of all load
demands are assumed to be fixed during the restoration phase
[13], [14], so active and reactive load demand are both directly
computed by multiplying the loading factor with their pre-
outage levels as (5b) shows. Furthermore, dependency of
CLPU realization on load pickup decision is described by
(6), through convex combination of sampled SUd,s(m) and
∆Sd,s(k,m) with respective weight Zd,m,s (m = 1, 2, ..|T |).
In fact, this is a special case for mixture distribution commonly
used in decision-dependent stochastic programming [27]. In-
stead of directly controlling parameters of decision-dependent
PDFs, this technique alters PDF pattern by shifting the realized
value under each probability level. Specifically, with reference
to Fig. 5, through adjusting the controllable weights (here is
Zd) of a group of pre-fixed PDFs (here are |T | discrete PDFs:
each consists of |S| values of SUd,s(m) and ∆Sd,s(m) with
probability πs), the DDU are tractably captured by outputting
different sets of CLPU realizations.
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Fig. 5. DDU modelling in load demand formulation with mixture distribution

Subsequently, to tackle the bilinear terms Zd,mzd,t (m =
1, .., |T |) introduced by the decision-dependent coefficients,
auxiliary binary variables Zd,t,m(m = 1, .., |T |) are used to
linearize each of them[28]:

Zd,m,t ≥ Zd,m + zd,t − 1 (7a)
Zd,m,t ≤ Zd,m (7b)
Zd,m,t ≤ zd,t (7c)

and (5a) is reformulated as:

LFd,t,s=

T∑
m=1

SUd,m,sZd,m,t−
t∑
k=1

T∑
m=1

∆Sd,m,s(k)Zd,m,t−k+1 (8)

Thus, the final formulation for power demand is presented
by (4),(5b)-(8). As all terms involving continuous and bi-
nary variables have been linearized and the interdependency
between the decisions and CLPU uncertainties have been
tractably decoupled, it can be directly integrated into the
followed MILP-based service restoration model.

III. MATHEMATICAL FORMULATION OF THE TWO-STAGE
SDDSR MODEL

A. Assumptions

By combining the above formulated load demand formu-
lation, a two-stage SDDSR model is constructed. Although
the main idea behind our proposed DDU-based model is
applicable to a wide range of outage scenarios in distribution
systems, here we make the following assumptions to narrow
down our focus and simplify the exposition:

1) There exists a centralized ADS control center that col-
lects information and optimizes operations. Intelligent
electronic devices (IEDs) are distributed throughout the
network and conduct measurements. Control commands
can be transferred from the control center to ADS devices,
such as DERs, lines and load switches.

2) DERs in the studied ADS include dispatchable energy
sources, i.e., diesel generators (DGs), energy storage
systems (ESSs), and RESs, i.e., wind turbine (WTs) and
photovoltaic units (PVs). Uncertainty of RESs’ outputs
are accounted in the model, by running the Monte Carlo
simulation to generate |S| scenarios for each of them.

3) There only exists one substation or single blackstart unit
(BSU) in the considered ADS, and tree topology is main-
tained through the whole restoration phase. PVs, WTs and
ESSs are treated as non-blackstart units (NBSUs) in this
paper. Therefore, even though the islanded operation of
the ADS as a whole is permitted, the restoration based

on multiple isolated islands is not considered and will be
addressed in our future work.

4) Considering that all lines and loads are equipped with
remotely-controlled switches is impractical, only a frac-
tion of them are presumed to be switchable. [29]. Fur-
thermore, pickup decisions for switchable loads are made
at the second stage to attain extra flexibility.

5) Without loss of generality [5], [13], [14], [20], the studied
medium-voltage system is considered to be balanced and
represented by its single-phase equivalent circuit.

B. Objective Function

Under the environment of ADS, service restoration has been
replenished with new subtasks [19]. Here the objective func-
tion includes three terms: the first term is to minimize the total
energy not served, with the weighting factor cENSd denoting
the cost for unit power interruptions. Note that load with higher
priority will result in higher cENSd . The second term is the
operation cost of DGs with unit energy cost cDGg . The final
term is penalty cost for RESs curtailment with unit penalty cost
cREr , as it is unrealistic to completely accommodate RESs with
limited local sources. For not encumbering the load pickup
performance, cENSd is set to be far higher than the other cost
coefficients. The first-stage switching operations are assumed
to be cost-free in this study [13], [14].

min
∑
s∈S

πs

( ∑
d∈ΩD

∑
t∈T

cENSd SDd,sP
L
d,0(1− zd,t,s)∆t +

∑
g∈ΩG

∑
t∈T

cDGg pdgg,t,s∆t+
∑
r∈ΩR

∑
t∈T

cREr pre,curtr,t,s ∆t
) (9)

C. Stage 1: Determine Optimal Switching Sequence and
Restart the BSUs and NBSUs

The outputs of the first stage include start-up decisions for
DERs, as well as sequential switching actions for distribution
lines. Associated constraints are presented as follows:∑

g∈ΩG−BS

vdgg,1+
∑

b∈Ωsub

vsubb,1 = 1 (10)

vesse,t = vess,ce,t +vess,de,t + vess,ie,t ≤ 1 ∀e ∈ ΩE , t ∈ T (11)

vt−1 ≤ vt ∀t ∈ T (12)

zd,t−1 ≤ zd,t ∀d∈ΩD/ΩD−SW , t∈T (13)

vdern,t ≤ vbusi,t ∀n ∈ Ωderi , t ∈ T (14)

zd,t = vbusi,t ∀d∈ΩDi /Ω
D−SW
i , t∈T (15){

vlineij,t ≤ vbusi

vlineij,t ≤ vbusj

∀ij∈ΩF−RC , t∈T (16a){
vlineij,t = vbusi

vlineij,t = vbusj

∀ij∈ΩF /ΩF−RC , t∈T (16b)

vbusi,t ≤
∑
ij∈ΩF

i

vlineij,t ∀i ∈ ΩB , t ∈ T (17)

∑
ij∈ΩF

i

vlineij,t =
∑
i∈ΩB

vbusi,t − 1 ∀t ∈ T (18)

where constraint (10) enforces one and only one BSU or
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substation to be started up at the first time step. Constraint
(11) imposes an ESS to operate in one of three modes,
namely charging, discharging and idle modes. Given that
the major objective of the restoration phase is to restore
electricity to end-users as quickly as possible, all DERs and
switches except load switches are required to be online once
started up or switched, as indicated in (12) and (13). And
vt is the vector that collecting all first-stage energizing vari-
ables, i.e., [vder1,t , .., v

der
|Ωder|,t, v

sub
1,t , .., v

sub
|Ωsub|,t, v

bus
1,t , .., v

bus
|ΩB |,t,

vline1,t , .., v
line
|ΩF |,t]. Constraints (14)-(17) state the interactions of

energizing actions among all components. As there only exists
one BSU in the system, constraint (18) together with (10)-(17)
sufficiently imposes the tree topology of the network at each
step.

D. Stage 2: Finding Optimal Load Pick-up Sequence and
Operation Schedule

In the second stage, based on the fixed network and on-state
DERs, the schedule for DERs are optimally made under each
possible uncertainty realization. Furthermore, switchable loads
are adjustable in this stage. Note that as switchable loads also
follow the CLPU pattern upon its energization, their pertinent
decision variables stated in demand formulation, i.e., (4),(5b)-
(8), should be replaced by zd,t,s,Zd,t,s and Zd,m,t,s accord-
ingly. Here we do not elaborate the modified formulation for
brevity. Thus, except the modified switchable load demand
formulation, the second-stage constraints are listed as follows:

zd,t−1,s ≤ zd,t,s ∀d ∈ ΩD−SW , t ∈ T , s ∈ S (19)

zd,t,s ≤ vbusi,t ∀d ∈ ΩD−SWi , t ∈ T , s ∈ S (20)∑
d∈ΩD

i

pLd,t,s+
∑

ij∈ΩF
i

pline
ij,t,s−

∑
ji∈ΩF

i

pline
ji,t,s =

∑
n∈Ωder

i

pdern,t,s+
∑

b∈Ωsub
i

psubb,t,s (21a)

∑
d∈ΩD

i

qLd,t,s+
∑

ij∈ΩF
i

qline
ij,t,s−

∑
ji∈ΩF

i

qline
ji,t,s =

∑
n∈Ωder

i

qdern,t,s+
∑

b∈Ωsub
i

qsubb,t,s (21b)

∀i ∈ ΩB , t ∈ T

−M · vlineij,t ≤ plineij,t,s ≤M · vlineij,t (22a)

−M · vlineij,t ≤ qlineij,t,s ≤M · vlineij,t (22b)

Usqri,t,s−U
sqr
j,t,s≤2(rijp

line
ij,t,s+xijq

line
ij,t,s)+M(1−vlineij,t ) (23a)

Usqri,t,s−U
sqr
j,t,s≥2(rijp

line
ij,t,s+xijq

line
ij,t,s)+M(vlineij,t −1) (23b)

∀ij ∈ ΩF ,t ∈ T , s ∈ S
vdgg,tP̌

dg
g ≤ p

dg
g,t,s ≤ v

dg
g,tP̂

dg
g ,∀g ∈ ΩG, t ∈ T , s ∈ S (24a)

vdgg,tQ̌
dg
g ≤ q

dg
g,t,s ≤ v

dg
g,tQ̂

dg
g ,∀g ∈ ΩG, t ∈ T , s ∈ S (24b)

RDg ≤ pdgg,t,s−p
dg
g,t−1,s≤RUg,∀g ∈ ΩG, t ∈ T , s ∈ S (25)

psubb,t,s ≤ vsubb,t P̂
sub
b,t ∀b ∈ Ωsub, t ∈ T , s ∈ S (26a)

qsubb,t,s ≤ vsubb,t Q̂
sub
b,t ∀b ∈ Ωsub, t ∈ T , s ∈ S (26b)

prer,t,s = vrer,tp
re
r,t,s ∀r ∈ ΩR, t ∈ T , s ∈ S (27)

vrer,tQ̌
re
r ≤qrer,t,s≤vrer,tQ̂rer ,∀r∈ΩR, t∈T , s∈S (28)

0 ≤ pre,curtr,t,s ≤ prer,t,s r ∈ ΩR, t∈T , s∈S (29)

vess,ce,t P̌ ess,ce ≤ pess,ce,t,s ≤ v
ess,c
e,t P̂ ess,ce (30a)

vess,de,t P̌ ess,de ≤ pess,de,t,s ≤ v
ess,d
e,t P̂ ess,de (30b)

Eesse,t,s = Eesse,t−1,s + βcep
ess,c
e,t,s ∆t− 1

βde
pess,de,t,s ∆t (31)

ĚESSe ≤ Eesse,t,s ≤ ÊESSe ∀e ∈ ΩE , t ∈ T , s ∈ S (32)

Ǔsqri ≤ Usqri,t,s ≤ Û
sqr
i , ∀i ∈ ΩB , t ∈ T , s ∈ S (33)

(plineij,t,s)
2 + (qlineij,t,s)

2 ≤ (Ŝij)
2,∀ij ∈ ΩF , t ∈ T , s ∈ S (34)∑

d∈ΩD

(pLd,t,s − pLd,t−1,s)−
∑

r∈ΩR

(prer,t,s − prer,t−1,s)

≤γ
( ∑
g∈ΩG

vdgg,tP̂
dg
g +

∑
e∈ΩE

vess,de,t P̂ ess,d
e

)
∀t ∈ T , s ∈ S (35)

where constraint (19) and (20) state that the switchable load
d cannot be shedded again once picked up, and can only be
restored when connecting to an energized node. Constraints
(21)-(23) present the linearized DistFlow formulation, where
the much smaller nonlinear power loss is neglected [5], [9],
[30]. When vlineij,t = 0, the constraints (21) ensure that no
power flows through line ij, while M is a sufficiently high
number to make the constraints trivial when vlineij,t = 1.
Constraints (23) state the voltage drop between two nodes,
and M is used to relax the power flow equation when line
ij remains de-energized. Constraints (24) and (25) impose
the output limits and inter-temporal ramping rates of DGs,
respectively. Constraints (26) state the restorative capacity of
substations. For RESs, constraint (27) presents their maximum
active power generations under each scenario. Their reactive
outputs can be adjusted in certain range to assist in voltage
stability, as constraint (28) states. Their curtailment limits
are described as (29). Constraints (30) restrict the charging
and discharging rates of an ESSs. State of charge (SoC)
equation is defined as (31), and the residual energy are limited
through (32). Voltage and power flow are restricted within their
technical limits, as shown in (33) and (34). To hedge against
large frequency dip, a simplified form of frequency response
rate (FRR) constraint (35) is used to restrict net load increase
at each step, where γ is the FRR factor related to prescribed
frequency nadir and set to be 5% in this paper [31].

Therefore, by combining the DDU-based power demand
formulation established in last section, the two-stage SDDSR
is defined by (4),(5b)-(35). Through linearizing the quadratic
constraint (34) via employing two square constraints stated in
[20], the final formulation is a large-scale MILP problem with
mixed-integer recourse.

IV. SOLVING METHOD FOR THE DDU-BASED MODEL

The introduction of stochastic DD-CLPU makes the above-
established SDDSR model computationally expensive, espe-
cially accounting for the massive second-stage binary variables
and scenarios brought by switchable loads. Therefore, the
PHA-based decomposition method is adopted here to relieve
this burden. PHA is a horizontal decomposition method used
for decomposing large-scale stochastic programs to scenario-
wise subproblems [32]. Through solving those decomposed
subproblems in parallel, the total computation time can be
significantly reduced. Although theoretical convergence cannot
be strictly guaranteed in MILP case, PHA can still serve as
an effective heuristic when discrete variables exist. As Monte
Carlo Simulation is applied to generate multiple scenarios for
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CLPU and renewable realizations, PHA is naturally applicable
in the considered context.

A. Compact form of SDDSR model

To simplify the exposition, the compact form of the two-
stage SDDSR model is first derived as below:

min
v

cTv +
∑
s∈S

πsϕ(v, s) (36a)

s.t. Av ≤ b, v ∈ {0, 1}n1 (36b)

where vector v represents all binary decision variables in the
first stage, and n1 is the number of those binary variables.
c ∈ Rn1 is the vector for cost coefficients corresponding to
v. The ϕ(v, s) is the recourse function which can be described
as follows:

ϕ(v, s) = min
y(s),z(s)

fTz(s) + gTy(s) (36c)

s.t. H(s)z(s) + Ky(s) ≤ d(s)−M(s)x

z ∈ {0, 1}n2 ,y ∈ Rn3 ∀s ∈ S
(36d)

where vectors z represents all binary variables in the second
stage with the dimension n2. y is the vector encompassing all
continuous variables in the second stage with the dimension
of n3. Vectors f ∈ Rn2 and g ∈ Rn3 are the cost
coefficient vectors correspond to the z and y, respectively.
(36d) is the compact form for all second-stage constraints,
where H(s) ∈ Rm2×n2 ,K ∈ Rm2×n3 ,d(s) ∈ Rm2 , and
M(s) ∈ Rm2×n1 . For distinguishing the original problem
with the following decomposed counterpart, the formulation
stated as (36) is hereafter referred to as extensive form (EF).

B. Implementation Process of Progressive Hedging Algorithm

For decomposing the EF, |S| copies of the first-stage vari-
ables v are introduced first, then scenario-wise counterpart are
subsequently formulated:

min
∑
s∈S

πs(c
Tv(s) + fTz(s) + gTy(s)) (37a)

s.t.
(
v(s), z(s),y(s)

)
∈ W(s) (37b)

v(1) = · · · = v(|S|) ∀s ∈ S (37c)

where W(s) is the feasible set for decision variables under
scenario s. Non-anticipative constraint (37c) is introduced
to force the convergence of first-stage decisions. Then the
pseudo-code for applying PHA on (37) are listed in Algorithm
2, with the following three steps:

Step 1: The iteration of PHA is initialized by setting the
iteration count k and multiplier w(k)(s) to 0;

Step 2: |S| subproblems are solved in parallel to get
v(k)(s) under each scenario s. Then the weighted average
v̄k is computed, based on which the w(k)(s) is updated
subsequently.

Step 3: Update k. Under each iteration, a well-chosen
penalty factor ρ is used to update w(k)(s), which is returned
to the objective function of corresponding subproblem in the
next iteration. Notice that each subproblem are augmented
with a linear term proportional to the multiplier w(k)(s) and

Algorithm 2: Pseudo-code of PHA for DDSR model

1 Step 1. Let k = 0 and w(k)(s) = 0 ;
2 Step 2. for s = 1 to |S| do
3 v(k)(s)← arg minv

(
cTv + fT (s)z(s) + gTy(s) :(

v, z(s),y(s)
)
∈ W(s)

)
;

4 end
5 v̄(k) ←

∑
s∈S πsv

(k)(s);
6 for s = 1 to |S| do
7 w(k)(s)← ρ(v(k)(s)− v̄(k));
8 end
9 Step 3. while g(k) =

∑
s∈S πs||v(k) − v̄(k)|| ≥ ε do

10 k ← k + 1;
11 for s = 1 to |S| do
12 v(k)(s)← arg minv

(
(cTv + w(k+1)(s)v +

ρ
2 ||v − v̄(k−1)||2 + fT (s)z(s) + gTy(s) :(
v(s), z(s),y(s)

)
∈ W(s)

)
;

13 end
14 v̄(k) ←

∑
s∈S πsv

(k)(s);
15 for s = 1 to |S| do
16 w(k)(s)← w(k−1)(s) + ρ(v(k)(s)− v̄(k));
17 end
18 end

a squared two norm term penalizing the deviation of v(k)(s)
from v̄(k), which can be understood as penalties for not
satisfying NAC.

Thus, through solving the decomposed subproblems in a
parallel manner, the computation complexity of EF is thus
relieved. Its performance in solving the proposed SDDSR
model is validated in the numerical test, from the perspectives
of accuracy and efficiency.

V. NUMERICAL RESULTS

A. Test System and Data

In this section, the performance of the proposed two-stage
SDDSR model is validated via the modified IEEE 123-node
test feeders. Based on the network parameters in [33], the
studied medium-voltage distribution system is modified to a
balanced system, and its single line diagram is depicted in Fig.
6. The unswitchable load nodes and lines are marked in Fig.
6. Here we consider a comparably extreme situation where
the ADS has totally lost power support from the substation
at node 610 during the whole considered restoration period,
due to the substation damage or a major outage originated
in the main grid. Under this circumstance, the ADS operator
is forced to temporarily form an islanded system by purely
utilizing its local sources. Here we assume only the DG at
node 27 as a BSU can offer blackstart capability, and node
27 also provides the reference voltage for the whole system.
The lower and upper limits of the voltage magnitude are set
as 0.95 p.u. and 1.05 p.u., respectively. cENSd are randomly
generated within the interval between $2/kWh and $8/kWh.
cDGg is set as $0.1/kWh, and cREr are equal to $0.01/kWh.
The considered restoration horizon contains 12 steps with a
10-min resolution.
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Fig. 6. Modified IEEE 123-node test feeders

TABLE I
DEFINITIONS FOR THE RESTORATION STRATEGIES WITH DIFFERENT

CONSIDERATIONS

Strategy CLPU
Stochasticity

Decision-
dependency

Mixed-integer
Recourse

I ! ! !

II # ! !

III # # !

IV ! ! #

As for the CLPU parameter estimation, historical data of
CLPU peak value are extracted from [8] and estimated by
polynomial regression with saturation at peak. Furthermore,
with reference to the simulation results in [9], the peak
duration is set as 10, 20, and 30min for the cold load picked
up within the time interval t = 1 to 4, 5 to 8 and 9 to 12,
respectively. As for the decay duration, 10 and 20min are
used for cold load that is picked up during the time interval
t = 1 to 6 and 7 to 12, respectively. Note that the duration
can also be calculated by dividing the loss of load energy
during the outage with regressed CLPU peak, if sufficient
reliable data are available [11]. Assume the blackout occurs
in a hot summer day with ambient temperature of 34°C. The
control center of ADS initiates restoration 10 min after an
unexpected blackout originated from the main grid. Apart from
the uncertainty of CLPU, the stochastic nature of WT and
PVs should also be considered. For WTs, Weibull distribution
[34] and truncated normal distribution [35] are commonly used
to quantify the uncertainty of wind speed and power output.
Here we adopt the truncated normal distribution to model its
output. For PVs, Beta distributions [36] are utilized to portray
their stochastic generations. Their expected power outputs
are derived from [37] and [38], respectively, with forecast
errors set to 10%. 2000 scenarios are generated for uncertain
variables by running Monte Carlo simulation, and then reduced
to 20 scenarios for tractability [39]. The reformulated MILP
problem is performed in Matlab 2021a and solved by Gurobi
9.1 through CVX toolbox, on an Intel Core i5-6500 CPU, 3.2
GHz CPU, 16 GB RAM, and 64-bit operating system PC.

Fig. 7. Generated power and percentage restored load under four strategies

B. Performance of Two-stage SDDSR Strategy

To test the efficiency of our proposed model, four restoration
strategies with distinct preliminary knowledge of CLPU are
compared. TABLE I presents the different considerations of
these four strategies. Strategy I is the restoration plan obtained
from our proposed model. Strategy II is extracted by neglect-
ing the stochasticity of the CLPU process, while strategy III
totally overlooks the DDU in CLPU. In Strategy IV, the pickup
decisions of switchable loads are determined in the first stage,
by not allowing for adjustment after uncertainties are realized.
To illustrate the expected and actual performance of these four
restoration strategies, we show comparisons of their ex-ante
and ex-post performances in this subsection.

1) Ex-ante Performance Analysis: First, ex-ante decisions
and objective values associated with four stated strategies
are evaluated. The term “ex-ante” originates in Latin and
means “before the event” [40]. Due to the fact that different
scenarios or parameters are given to the CLPU formulation
under distinct ex-ante assumptions, the findings reported in
this part are their predicted performance (or, alternatively, in-
sample performance) with no risk implications or security
assurances.

The expected objectives by adopting four strategies are
$11324.14, $10284.13, $8107.13 and $13874.28. Fig. 7 de-
picts the step-wise power generation and accumulated base
load restoration in percentage term. As shown by the curves,
Strategy III completed the load restoration at t = 9, which
is much more rapid than strategy I and II who finish re-
energization at t = 11 and t = 12. This shows that the
consideration of DDU will delay the restoration process.
Strategy II also outperforms Strategy I regarding the expected
cost and restoration rate with a comparably smaller gap, as
more aggressive switching actions can be made with reduced
uncertainty. The pickup progress of strategy IV is behind the
other three due to the reduced flexibility. It is worth noting that,
while Strategy II and III appear to outperform our proposed
strategy I in terms of ex-ant restoration cost and efficiency,
their security issues and actual cost cannot be adequately
displayed, as will be discussed in the following subsections.

Furthermore, despite the same input of DERs’ information
and forecast, different generation schedules are observed in the
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TABLE II
SECURITY VIOLATIONS OF FOUR STRATEGIES

Time step
Issues Strategy 1 2 3 4 5 6 7 8 9 10 11 12

Average bus no. with II 0 0 0 0 0 0 0 0 0.9 1.8 1.8 0
voltage limits violation III 0 0 0 0 1.2 1.2 8.5 2.6 3.4 2.2 0.6 0
Average line no. with II 0 0 0 0 0 0 0 0 1.7 1.1 0.3 0

overloading III 0 0 0 0 0 3.7 5.9 4.7 2.8 2.2 0 0
Ratio of II 0 0 0 0 0 0 0 0 0 0 0 0

FRR constraints violation III 0 0 0 0 0.7% 0.7% 1.9% 1.3% 0 0 0 0

Fig. 8. Voltage Profile of Node 60 and 105 and Loading Level of Line 52-152
(strategy III under test scenario 2)

four strategies. The trivial difference among the generations
under strategy I, II and III before t = 4 is mainly because
the absolute value of load deviation is relatively small due to
the light load. Note that for strategy I and II, their overall
generation from t = 6 to t = 7 stay nearly the same even
though their restored base load increased, reflecting the diver-
sification of some former-energized load nodes. The decrease
in generations after system-wide restoration is completed also
shows the decay process of cold load amplitude. Furthermore,
while the overall power generation of Strategies I, II, and III
is comparable, their load restoration progress is significantly
different, due to different ex-ante assumptions about CLPU
realizations.

2) Ex-post Performance Analysis and Potential Security
Issues: Because the results computed above are all based on
distinct ex-ante assumptions, they do not adequately disclose
hidden risks in real-world operations. Thus, post-ante (origi-
nating from the Latin for “after the event”) evaluations are con-
ducted to test their out-of-sample performance. Specifically, by
fixing the first-stage solutions of four strategies, i.e., energizing
sequences of the network and DERs, we examine their out-
of-sample performance using a test set. The test set contains
1000 independent scenarios that are generated by Monte
Carlo Simulation to approximate the actual decision-dependent
CLPU realizations. For hedging against infeasibility, security
and FRR constraints (33)-(35) are relaxed by adding slack
variables, which are penalized with high cost in the objective.
In this way, the security pitfalls faced by four strategies can
be explicitly presented.

TABLE II summarizes the test results in terms of the
average number of buses with voltage violations and the
average number of lines with overloading. The ratio of FRR
constraints that are violated indicates the proportion of scenar-

Fig. 9. VDDSS under different ambient temperature and systemwide outage
duration

ios with a large frequency dip. It was discovered that under
the energizing sequences of strategy I and IV, all test scenarios
can be handled without compromising security by using the
available flexible measures.

Thus, only the results of Strategy II and III are presented in
TABLE II. Violations in voltage and line rating limits are both
observed in these two strategies, especially in Strategy III. To
show the intensity of the violations, Fig. 8 depicts the voltage
profile and line loading level of selected nodes/line under a
certain scenario. It is shown that the voltage profile of node
105 rises up to 1.17 p.u at t = 7, due to an increased need
to deliver more power to balance the underestimated demand
than the ex-ante expectation. Moreover, the maximum loading
of line 52-152 reached 392.34 kW, about 30% higher than
its rating. This is also because PV at node 13 should deliver
more power through this line to satisfy the excessive demand
which has failed to be accounted under the ex-ante assumption
of Strategy III. These results present the potential risks of
adopting conventional deterministic CLPU formulation, and
demonstrate the importance of properly modelling the DDU
of the CLPU process from the perspective of security.

C. The Value of Decisin-Dependent Stochastic Programming
under Different Settings

After examining the proposed strategy’s security benefits, an
effective index, the value of the decision-dependent stochastic
programming solution (VDDSS) [41], is introduced to measure
the inherent monetary value of the DDU incorporation. To
compute this index, first the restoration model with decision-
independent PDF for the CLPU process is optimally calcu-
lated. Then its first-stage solutions are fed into the SDDSR
model and checked by the above-generated test set. Load
shedding is permitted here to avoid problem infeasibility, and
the corresponding penalty cost is set as 3 times the unit
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TABLE III
RESULTS FROM SYSTEMS WITH A DIFFERENT NUMBER OF SWITCHABLE

LOADS

Case Nsw Obj.($) Tres

1 0 13874.28 14
2 35 11324.14 12
3 70 10159.21 11
4 119 9415.60 11

customer interruption cost. In this way, VDDSS is obtained
by subtracting the optimum of the proposed SDDSR model
from the optimum of recomputed SDDSR with a fixed first-
stage solution derived under decision-independent CLPU.

1) VDDSS under Different Ambient Temperature: The am-
bient temperature is regarded as a critical factor in determining
the post-outage load profile for an ADS with a high penetration
of TCLs [7], [9]. Hence, VDDSS is first checked under
different ambient temperatures with the same systemwide
outage duration of 10 min. Note that although similar results
are likely to be observed in a cold winter, here we focus on
the hot summer when the ambient temperature is high. Fig.
9(a) shows the result. As the ambient temperature rises, the
VDDSS increases accordingly. The slope accelerates at the
start, and tends to slow down gradually. The VDDSS is about
30.97% of the objective value under 35°C, but only accounts
for 3.21% under 25°C. The growing tendency is mostly due
to the fact that TCLs penetrate more extensively at higher
ambient temperatures, where they take longer to return to their
temperature setpoints.

2) VDDSS under Different Systemwide Outage Duration:
This time we vary the systemwide outage duration with a fixed
ambient temperature of 34°C. The result is presented in Fig.
9(b). As the outage proceeds, VDDSS increases at first because
of the growing CLPU peak. But interestingly, the curve shows
a falling trend after peaking at TOsys = 40min. A possible
explanation might be that the internal temperature of TCLs has
completely converged to the ambience at the tail of restoration
phase. In this situation, the interdependency between CLPU
pattern and decisions will be naturally decoupled, leading to
a reduced value of our DDU-based formulation. It could be
further inferred that the VDDSS will gradually converge to
zero as the systemwide outage further proceeds.

Therefore, the computation of VDDSS verifies the neces-
sity of utilizing the stochastic decision-dependent restoration
model, especially when outage happens under high ambient
temperature or a relatively short outage duration. But in the
case of systems with light TCL penetration or outages with
prolonged duration, it is also acceptable to slightly sacrifice
restoration performance for computational tractability.

D. The Impact of Switch Number
This subsection investigates the effect of the switchable

loads’ number on restoration efficiency. TABLE III summa-
rizes the four cases examined, where N sw in the second
column denotes the number of switchable loads and T res in the
fourth column is the time steps spent on complete recovery.
The switch locations in Case 3 and 4 are picked using the base
topology illustrated in Fig. 6.

Fig. 10. Percentage restored load in systems with a different number of
switchable loads

TABLE IV
PERFORMANCE RESULTS OF PHA AND EF

Obj. ($) Scen. Ite. Computation Time
PHA 11324.14 10 4 128s

11515.73 20 9 723s
11266.47 50 19 3344s

EF 11324.14 10 - 2478s
11515.73 20 - 8906s

- 50 - -

TABLE III shows that as the number of switchable loads
increases, the optimal restoration cost reduces. This is a
trivial result, as the additional switches enable operators to
re-energize spatially dispersed loads to avoid local congestion
and voltage violations. But surprisingly, the overall restoration
time is not significantly improved, particularly in cases 3 and
4. With reference to Fig. 10, which depicts the percentage
restored load at each step, we see that while case 4 initially
restores more quickly than case 3, they become almost indis-
tinguishable after t = 8. This is because later restored loads
that are subjected to larger power inrush cannot be accommo-
dated effectively by simply rearranging the energizing order
of switchable loads.

It’s also worth mentioning that the switch locations are
crucial, as certain switches have greater effects than others. For
instance, as illustrated in Fig. 10, the restored load capacity
at t = 2 is obviously greater in Cases 3 and 4. While the
load at node 25 is presumed to be unswitchable in Cases 1
and 2, it is assumed to be switchable in the other two cases.
Given that node 25 has a large load capacity, operators can
bypass it and subsequently energize the loads located at its
downstream nodes if a switch is placed here. Thus, future
research may look into the optimal switch allocation problem
under a budget constraint.

E. Performance comparison of PHA and EF

Finally, perfomance of PHA is validated by comparing its
solving accuracy and efficiency with the EF. As shown in
TABLE IV, the objective of PHA-based decomposed model
has all converged to the global optimum computed by the EF
with acceptable tolerance. Furthermore, computation time has
also been greatly reduced by PHA, with a decline of 94.8%
and 91.9% under the 10-scenario instance and 20-scenario
instance. For 50-scenario instance, no feasible incumbent
solution for EF is achieved after 8-hour running, while the
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PHA-based decomposed model can still be tackled within
acceptable computation time.

VI. CONCLUSION

Accounting for the inherent linkage between the load pickup
sequences and the stochastic CLPU process, this paper pro-
posed a two-stage SDDSR model for assisting ADSs in service
restoration. Tractable DDU-based load demand formulation is
established through parameter sampling and mixture distribu-
tion. To tackle the computational complexity induced by DDU
modelling and switchable loads, PHA is utilized to relieve the
burdens via parallel computing. From numerical studies, we
found that the quantification of DDU can greatly shield ADSs
from potential security issues, compared with its decision-
independent counterparts. Furthermore, the computation of
VDDSS illustrates the significance of our proposed DDU-
based model, especially under the outage scenario with high
TCL penetration and comparably short outage duration. This
can also serve as a reliable reference for ADS operators in
strategy selection under different outage settings. Finally, PHA
is examined as an effective tool for tackling the DDU-based
model with mixed-integer recourse, as satisfactory accuracy
and reduced running time are both observed. Future studies
will examine the impacts of communication-related uncer-
tainty and partial load oberservability, since the coverage rate
of smart meters can not be guaranteed in some traditional
systems. Additionally, it is desirable to include imbalanced
systems and nonlinear properties to achieve more accurate
branch flow results. In such cases, relaxation and approxi-
mation techniques might be resorted to construct a semidefi-
nite programming (SDP) or second-order conic programming
(SOCP) model.
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